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M3T: Morphable Multithreaded Memory Tiles 

  
 
 
1. INTRODUCTION AND OVERVIEW 

 
Malleable, polymorphous computing systems can provide solutions that are orders-of-magnitude 
more cost-effective than conventional ones through their ability to morph or reconfigure to 
match changing mission and scenario demands. Instead of adopting a hardware-first approach, 
these systems rely on post-silicon optimization in a way that both hardware and software 
cooperate in a constraint-sensitive environment. 
 
The current state-of-the-art in malleable systems is largely represented by FPGA hardware. 
However, FPGAs are typically designed to enable the fine-grained programming of structures; 
they were not conceived to implement space-efficient, highly-optimized complex functional 
blocks such as floating-point units or memory hierarchies. Moreover, FPGAs tend to display low 
speed. Finally, FPGA systems lack the sophisticated polymorphous software support, in the form 
of morphable run-time systems, compilers, modeling, and synthesis tools, that would 
complement the hardware. 
 
With the Morphable Multithreaded Memory Tiles (M3T) project, a novel approach to 
reconfigurable systems is explored. Adaptation at a coarse grain, using as reconfigurable blocks 
many general-purpose RISC cores interleaved with memory blocks in a chip is also explored. In 
addition, advanced polymorphous software support, where adaptivity is pervasively embedded 
into every layer is explored. 
 
An M3T chip is composed of several general-purpose RISC cores and memory blocks placed in 
an interleaved manner (Figure 1).  The hardware that interconnects the processor and memory 
modules and provides support for their communication and synchronization can be dynamically 
reconfigured in many ways through software as the program runs. As a result, the overall 
processing architecture morphs or reconfigures itself into different “architectural templates’’ 
such as TaskScalar, VLIW (Very Long Instruction Word), MIMD (Multiple Instruction Stream 
and Multiple Data Stream), or Streaming engine, or even some combination of them sharing the 
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Figure 1: System with Morphable Multithreaded Memory Tiles (M3T). 
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chip as a program executes. TaskScalar is a novel template where the RISC cores work in a 
tightly-coupled manner, executing very fine-grain tasks speculatively. The TaskScalar template 
delivers very high performance for irregular codes (where neither superscalars nor chip-
multiprocessors excel) and enhances programmer productivity. 
 
An M3T chip has several reconfigurability axes including the number of processor and memory 
modules that participate in the reconfigurations and the characteristics of the processor modules 
(number, type, latency, and bandwidth of the functional units) and memory modules (levels of 
caching and organization). 
 
The M3T architecture is supported by advanced polymorphous software that includes a set of 
modeling and synthesis tools, a compiler, and morphware. Based on the characteristics of the 
application to run, the modeling and synthesis tools generate a near-optimal (i) architecture and 
morphware configuration, and (ii) application partitioning and scheduling. The compiler 
generates code for M3T that can dynamically adapt to changing conditions. Finally, the 
morphware provides polymorphous, dynamic run-time support, including thread scheduling, 
memory management, and device drivers. 
 

Figure 2: Comprehensive polymorphous software support in M3T. 
 
To ensure technology transfer of our ideas, the M3T team includes leading research and 
development personnel from IBM and BAE SYSTEMS. The M3T work has been tightly-
coupled with IBM’s Blue Gene/C (Cyclops) chip design [CAS02]. This is evidenced by the fact 
that some of the polymorphous hardware and software features of M3T have been incorporated 
into the Cyclops chip. 
 
In the following sections, we describe the proposed M3T system solution (Section 2), the 
methods, assumptions, and procedures followed (Section 3), background and alternative 
solutions (Section 4), the results obtained (Section 5), technology transfer (Section 6) and 
conclusions and recommendations (Section 7). 
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2. PROPOSED SOLUTION 
 
In this section, the M3T’s polymorphous micro-architecture is described (Section 2.1), along 
with its polymorphous software, which is composed of modeling and synthesis tools (Section 
2.2), compiler (Section 2.3), and morphware (Section 2.4). Finally, an overview of the 
applications that were evaluated  is provided (Section 2.5). 
 
2.1 Polymorphous Micro-Architecture 
 
The key novelty of M3T’s micro-architecture is its ability to quickly morph the processing 
resources on the chip into a TaskScalar, VLIW, MIMD, or Streaming architectural template, or 
even a combination of them as the program executes. The TaskScalar is a novel template where 
the RISC cores work in a tightly-coupled manner, executing very fine-grain tasks speculatively. 
TaskScalar delivers very high performance in irregular codes such as SpecInt 2000  [SPE00], 
which have many accesses to memory through hard-to-analyze C pointers, loops with few 
iterations, many hard-to-predict branches, and data structures dominated by short arrays of 
records. In these codes, superscalars cannot find much instruction-level parallelism and chip-
multiprocessors cannot extract more than one thread most of the time. In addition, TaskScalar 
enhances programmer productivity as will be shown in Section 5.1. The ability to morph is 
enabled by several special hardware support features provided in the architecture. Specifically, 
the M3T architecture goes beyond providing efficient support for the conventional core-to-
memory communication and core-to-core synchronization. It also provides efficient support for 
core-to-core data communication and core-to-core control communication. 
 
The M3T architecture supports core-to-core data communication by allowing a processor to read 
from or write to the registers of another processor. Core-to-core control communication is 
supported by allowing a processor to broadly control the data-path of another processor. These 
features allow the M3T architecture to morph into a TaskScalar, VLIW, or Streaming engine 
(Table 1).  

 
Template Core-to-Mem 

Communication 
Core-to-Core 

Synchronization 
Core-to-Core Data 

Communication 
Core-to-Core Control 

Communication 
TaskScalar X X X X 

VLIW X X X X 
MIMD X X   

Streaming X X X X 

Table 1: Supports required for each architectural template. 
 
The different architectural templates are implemented as follows: 
 
MIMD 
Each processor operates independently, executing its own stream of instructions. Communication 
occurs only through reading and writing words in memory. This template uses the fewest number 
of the polymorphic hardware features. It enables efficient execution of coarse-grain explicitly 
parallel code. 
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The MIMD execution model directly benefits from the underlying M3T multiprocessor 
architecture. Parallel applications already developed using a MIMD philosophy will run well on 
M3T. Furthermore, since all the cores are located on a single chip, communication between 
threads is inexpensive.   
 
TaskScalar 
The instruction stream is broken down by the compiler into very fine-grain tasks which are 
dynamically assigned to the processor cores. A task assigned to a core may not be eligible to 
execute because of a data or control dependence with a predecessor task that has not yet 
completed. When the dependence is resolved, the task is allowed to execute. This mode of 
execution requires the ability of a core to update the register structures of another (e.g. when 
passing the input arguments in a task spawn), control another core (e.g. stall that other core until 
the dependence is resolved), and quickly synchronize, if necessary. Overall, this template enables 
aggressive parallelization of irregular codes. 
 
Parallel programs can utilize the MIMD template in M3T. However, the TaskScalar template is 
designed for situations when the application does not have enough coarse-grain parallelism, and 
using fine-grain tasks results in too much overhead.  For these situations, the TaskScalar 
template provides fast synchronization and communication between cores. It uses two hardware 
modules called Pending Task Window (PTW) and Task State Table (TST). These modules, 
which are described next, enable a tightly-coupled architecture that efficiently executes very 
small tasks. 
 
Cores collaborate to provide the necessary task-level parallelism. To enforce dependences 
between tasks, the TaskScalar template uses an architectural module developed for the M3T 
called the Pending Task Window (PTW). The PTW has an entry for each active task, which 
contains the address of the location that the task will update. The PTW checks for dependences 
between tasks and enforces them in a way similar to thread-level speculation. Specifically, every 
time that a reader task needs to read the address that a task will write, a message will be sent to 
the corresponding PTW. There, the hardware will enforce the following protocol. If the reader is 
a predecessor of the writer task, the reader will be allowed to proceed, reading the value that 
existed before the write. If, instead, the reader is a successor, then the read takes the value 
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Figure 3: Organization of the PTW and TST hardware structures used in M3T. 
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produced by the writer or stalls if the data is not ready.  This support synchronizes readers and 
writers. 
 
Note that the PTW is not a centralized structure; it is distributed between cores. One PTW is 
associated with each cluster of  processors in the M3T chip. For our base design, the M3T chip 
has 16 clusters of 4 processor elements each. Consequently, there are 16 PTWs per chip. The 
state of a task is stored in a Task State Tables (TST). It contains the registers and other state 
required to restart the task, like in thread-level speculation. Each processor has one TST. Figure 
3 shows the organization of the PTW and TST hardware. 
 
 
VLIW 
Each core executes its own stream of instructions, but the cores operate in lockstep. The union of 
the independent streams is equivalent to a single VLIW stream. This template works best when 
the streams of the different cores are very similar to one another. Cores synchronize after every 
few instructions. During each step, at most one operation can be a branch. If the branch is 
predicted taken, the processor executing the branch uses core-to-core control communication to 
force all the other processors to jump to the new VLIW word. Furthermore, data may also be 
passed from the registers of one core to the registers of another. Finally, very fast 
synchronization support ensures that all processors execute in lockstep. 
 
There are many scientific applications which have very little task level parallelism but exhibit 
large instruction level parallelism.  If these applications were forced to run sequentially on a 
small core, the performance would be very poor.  In large applications, this sequential code 
would limit the performance of the entire application significantly.  
 
VLIW architectures can execute these codes well because loops can be pipelined and scheduled 
very tightly across all the functional units.  In M3T, a small piece of code is distributed across 
multiple cores in order to utilize the hardware in the same way a VLIW architecture does. Each 
core computes part of the computation and synchronizes at set intervals with its neighboring 
cores. This results in a multithreaded lock-step execution of the program.  
 
The VLIW template uses the M3T’s synchronization support to synchronize in a handful of 
cycles. This provides a tightly coupled execution across cores. As a result, parallelization of 
loops and other structures with a large number of dependences is possible without suffering the 
cost of expensive synchronization operations. 
  
Streaming 
The M3T architecture also supports Streaming. The mapping of  the Streaming Virtual Machine 
(SVM) [SVM03] to an M3T chip is as follows: (1) the Stream Execution Core is the set of 
CPUs; (2) the Kernel Program Memory is the instruction caches of the CPUs; (3) the Stream 
Register File is the shared multi-banked cache;  (4) the DMA Engine is a plain CPU; and (5) the 
Control Thread is a plain CPU. 
 
With this mapping, the workings of the SVM are as follows. The Stream Execution Core loads 
stream inputs from (and stores them to) the shared multi-banked cache, which acts as the Stream 
Register File (SRF). The Kernel Program Memory works trivially, as it is the instruction caches 
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of the processors in the M3T chip. The SRF allows read and write accesses from both the Stream 
Execution Core and the Direct Memory Access (DMA) engine, simultaneously. The DMA 
engine is just another CPU that generates addresses by strides, or indexed if the addresses are 
recorded in the SRF. It should be noted that the M3T’s DMA engine can perform very complex 
operations, since it is implemented in the M3T architecture with a standard CPU. Finally, the 
Control Thread gives commands to the Stream Execution Core and the DMA Engine through the 
M3T’s PTW. The Control Thread is notified of task completions (the VM_DONESYNC calls) in 
two ways: (1) it can build a tree of PTW requests, which allows pipelined streaming, or (2) 
through the use of  barriers. 
 
2.1.1  FFT As An Example 
 

To illustrate the flexibility of supporting multiple architectural templates, an FFT will be used. 
An FFT can be graphically represented with a butterfly network as in Figure 4, where the nodes 
are operations and the edges data transfers. Each node in a butterfly computation involves 
reading two complex data operands and one complex coefficient, performing ten real operations, 
and storing two complex results.  
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Figure 4:  8-point radix-2 FFT example. 

 
Depending on the number of processors available, and the cost of computation and 
communication, different templates may be preferable. For example, if we have few processor 
modules, we can use the VLIW or TaskScalar template. In this case, the nodes represent ALU 
instructions. We distribute the instructions into as many groups as issue width we want, and use 
software pipelining to fill up slots. While either VLIW or TaskScalar would work, VLIW is 
preferred because all dependences are known statically. 
 
If many processors are available and communication is cheap, the Streaming template can be 
used. In this case, a processor is assigned to each node in the butterfly network and the 
communication is forced to proceed synchronously. If, instead, fewer processors are available, 
one processor is assigned to each row in the butterfly network and the MIMD template is used. It 
is possible that much time is wasted synchronizing. However, the MIMD template may make 
sense if a very large FFT is needed. In this case, a large chunk of the network is assigned to each 
processor and synchronization is negligible.  
 
2.2 Polymorphous Modeling and Synthesis Tools   
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To promote migration to the newest, evolving hardware, the M3T solution uses a software-first 
approach. This is in contrast to the current practice in building resource-constrained, high-
performance systems, which involves implementing software that is hardwired to a specific 
(soon-to-be legacy) hardware architecture. The M3T approach requires a logical and physical 
separation of application specification from hardware implementation.  It also requires a flexible 
application specification to capture a design space, expressing flexibility for future hardware 
capabilities. For M3T, we have generated tools that have the capability to synthesize for 
heterogeneous architectures and allow rapid re-mapping to multiple architectures during run 
time.  
Figure 5 shows an example of the concepts captured in our modeling tools. Software component 
models are heavily annotated. The hardware modeling captures substantial details of components 
and their mapping into architectural templates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Concepts captured in the modeling tools. 
 
For our polymorphous modeling and synthesis tools, there are two issues to consider: (i) design 
space representation and (ii) design space exploration and system synthesis. We consider each 
one in turn.  
 
2.2.1 Design Space Representation   
 
Our tools support multiple experts contributing to the system design.  M3T uses a natural, solid 
set of formalisms and linkage mechanisms for polymorphous design capture. We describe them 
next, along with our methods for synthesizing systems directly from these models. 
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Asynchronous Dataflow is effective in capturing a wide range of embedded, performance-
critical systems [EDW97]. A dataflow representation has three advantages:  
 
1. Parallelism is retained. The algorithm is not artificially serialized.  Since nodes in the graph 
are independent, except as explicitly defined by inter-node connections, nodes can be arbitrarily 
assigned to independent memory spaces (processors). The representation is architecture-
independent.  
 
2. Control is implicit. Process scheduling is determined by data availability (and node priority).  
In fixed-rate systems, processes can be scheduled statically, for maximum efficiency and 
guaranteed (by construction) timing. 
 
3. Domain match. Dataflow concepts map to signal and speech processing nomenclature. This is 
evidenced by the popularity of Mathwork’s Simulink. 
 
Hierarchical finite state machines (FSM) are an accepted method for capturing dynamic model 
system behavior [HAR].  In this capacity, they can be used to represent the individual modes of 
the system under development, along with the mode-varying system requirements.  Arbitrarily 
complex behavior can be specified and managed. 
 
Hardware architectural models capture aggregate speed, memory, connectivity, and type of a 
processor. Prior research developed methods for capturing and managing macro-scale 
architectural adaptation. These models used an attributed, hierarchical block diagram, familiar to 
designers as schematics. As M3T’s tools manage, allocate and configure processors to a much 
finer level (both temporal and physical), we require a significant depth of information to capture 
morphable processors.  
 
System and application constraints are key to specifying implementation requirements and 
building a system that responds to those requirements.  Constraints cross-cut the system design, 
tying system modes to algorithms implementations, implementations to architectures, and 
architectures to hardware components.  Timing constraints establish temporal requirements of 
the system. Constraints offer a way to manage and explore entire design spaces, an impossible 
task with standard optimization techniques. 
 
2.2.2 Design Space Exploration and System Synthesis 
 
System synthesis converts these models, representing a large design space, into a set of feasible 
design implementations.  The models capture a vast quantity of design solutions as a design 
space.  Synthesis must find at least one that satisfies all of the system constraints.  M3T’s design 
tools have developed methods for navigating large design spaces, and finding viable solutions for 
reconfigurable systems. Our work represents a significant extension from past Adaptive 
Computing Systems (ACS) work, since the design space contains several new dimensions in 
micro-architectural flexibility.   
 
Generating the implementations for the morphable architecture involves first selecting an 
architectural template. Computational components are mapped to the entities of the template. 
The code and hardware configuration instructions/tables are synthesized so the system produces 
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the proper computations at the proper time.  The code contains system-level clues to enable the 
compiler to generate correct and efficient operations (Section 2.3). 
 
Generating the time-critical communications infrastructure involves: selecting the physical 
communications medium; matching protocols for each individual pair of producers/consumers; 
and synthesizing a program/configuration for the communication hardware/software 
components.  This relies on having an accurate, formal description of the communication 
protocol of a component (stored in the models) and a method for synthesizing near-optimal 
communications engines.  
 
The morphware components are configured to produce a morphable kernel.  This kernel is 
customized to application requirements, software dataflow information, and target hardware 
architecture. A specific instance of the morphware is driven by the application and the 
architecture, and can take several shapes during the functional lifespan of the system.  The 
modeling and synthesis tools optimize the morphware kernel for the application. 
 
Finally, embedded systems require guarantees of correctness.  Formal verification methods are 
insufficient to prove correctness, so validation testing is employed.  Testing is never fully 
satisfactory, due to time limitations.  A continual verification process is needed. Built-in 
validation must not add significantly to the cost/size/power of the system, so minimal-load 
testing procedures must be inserted into the production version of a system.  This minimal 
loading is achieved by testing only critical parameters, identified as system constraints in the 
design space.  On-line checking algorithms are generated to verify system constraints.   Since the 
checking infrastructure is created along with system synthesis, the satisfaction of real-time and 
other constraints takes the load of checking infrastructure into account. 
 
2.3 Polymorphous Compiler 
 
The M3T polymorphous compiler is based on the Stanford University Intermediate Format 
(SUIF) [HAL96] compiler. It is a source-to-source C compiler that works closely-tied with and 
subordinated to the modeling and synthesis tools just described. The compiler has two main 
functions, namely to generate M3T code and to support the tools. We consider each function 
next. 
 
2.3.1 Generation of Code for M3T 

 
The M3T compiler is responsible for generating code that will be executed on different 
architectural templates. Because automatic selection of templates is difficult, the compiler needs 
hints to decide on which template a particular kernel should execute. Rather than extend the 
language with special constructs, the compiler relies on pragmas, either inserted by the 
programmer or generated automatically by synthesis tools. Such pragmas will be used by the 
compiler to generate the correct code. The pragmas employed in the source code provide a 
variety of information to the compiler.  There are three groups of pragmas. 
 
Architecture reconfiguration pragmas. These are the most important. They indicate how the 
architecture should be reconfigured at run time. Reconfiguration can occur at the beginning of 
the application execution and also at different points during the application. 
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Code breakup pragmas. They indicate how the code should be broken down into modules to be 
scheduled as a unit. The code in a module should have a uniform behavior and good locality. 
Depending on what architecture template the module is expected to run on, the compiler 
optimizes its data structures and paths differently. 
 
Module scheduling pragmas. They indicate how, when, and where the module should be 
scheduled. For example, these pragmas may indicate that a module be executed when a certain 
condition occurs on a certain architectural template. In addition, these pragmas may also specify 
the synchronization and communication between this module and other modules.  
 
Typically, the compiler fully specifies the run-time conditions of the application. However, there 
are cases when there is not enough information at compile time to make all the decisions. In this 
case, pragmas indicate the several plausible choices and command the compiler to generate 
adaptive code. Specifically, the code is generated with several (computation alternative, 
architectural template) pairs. When  the system reaches the code at run time, it measures the run-
time conditions and, depending on them, selects one of the pairs. 
 
In our implementation, we have organized the M3T compiler as a set of transformers, one for 
each architectural template. Figure 6 shows the structure of the M3T compiler. 

 
 
2.3.2 Supporting the modeling and synthesis tools 
 
The compiler has very detailed models of the different architectural template. These models 
include the latencies and bandwidths of functional units, wires, caches, and other components. In 
addition, the compiler can easily estimate how long a piece of code will take by compiling the 
code and generating machine instructions with all the compiler optimizations added. These two 
capabilities are exploited by the modeling and synthesis tools by including the compiler in the 
loop of hardware/software generation. 
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Figure 6: Structure of the M3T compiler. 
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In this case, the tools call the compiler with several (computation alternative, architectural 
template) pairs. The compiler uses all the information that is available statically, to predict 
memory access patterns and resource contention. With all this information, it returns the best pair 
to the tools. Note that, when the compiler makes decisions, it does so fully aware of the 
morphware shapes that the code will find at run time (Section 2.4). In particular, it knows about 
the thread scheduling and memory management used for the particular architectural template it 
compiles for.  
  
2.4 M3T Morphware   
   
The M3T morphware provides the glue that marries a high-level application program to the 
dynamically changing low-level M3T architecture. The inner guts of the morphware are a set of 
modules of a real time variant of the popular Linux operating system, which provide a Posix-
based Application Program Interface (API). The shape of the morphware at any one instance is 
driven by two forces.  From the top, the applications require various subsets of the API points to 
be available at any one time.  From the bottom, the M3T template is changing and concepts such 
as physical input/output, network interface, interrupt servicing, data-paths, and processor 
registers and state are a moving target.  
 
The M3T morphware support is driven by a set of conflicting requirements. 
 
1) The software first approach requires a consistent API for basic system services.   
2) The asynchronous dataflow paradigm utilized by the modeling tools (Section 2.2) mandates a 
streams-like interface for glue between the computational nodes. Efficient implementation of the 
inter-computational node glue is highly dependent upon the processor architecture at any 
moment. Even the data inside these streams can change. 
3) Architectural changes can occur dynamically, driven by events detected at the higher level, or 
they may change dynamically based on lower-level scheduling events or performance 
enhancement opportunities.  Synchronization and coordination services between the lower and 
upper architectures are thereby required dynamically. 
4) As the architecture changes, the performance requirements for the morphware remain.  The 
M3T morphware must provide a run-time performance to meet many application domains, 
operating with minimal resources. The M3T morphware strives to be like a special hand-coded 
kernel for each instance of its higher and lower level interfaces. 
5) A monolithic pre-built morphware image supporting all possible system scenarios, states, and 
shapes could be enormous. 
 
The upper shell of the M3T morphware allows it to present services in a fashion typical of 
conventional operating systems. The core of the morphware kernel is a real-time scheduler. The 
M3T morphware includes system initialization, debugging support, exception handling (like 
signals), system calls such as time, inter-process communication, shared memory access, 
synchronization primitives, and memory management. As well, concepts of I/O are supported 
through device drivers.  The device drivers themselves are able to deal with interrupts, DMAs, 
and programmed I/O regardless of the architecture shape.  Table 2 describes some of the M3T 
morphware shapes. 
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 Scheduler Memory Management 

& System Calls 
Device Drivers 

Task- 
Scalar 

- Scheduler classic form 
- Process state: stack, task control 
block, memory spaces (per 
process) 
- Critical section implemented by   
disabling interrupts 

- Single memory pool 
- Mutual exclusion via 
critical sections for memory 
access and system calls  
 

- Utilize programmed I/O. 
- Interrupts used for external event 
synchronization 
- Architecture can utilize instruction 
unit like a DMA or I/O processor 

MIMD 
 

- Micro-scheduler for each 
instruction unit 
- Shared memory space guarded 
through multi-instruction unit 
mechanism for critical sections 
 
 

- Single shared memory 
pool 
- Mutual exclusion based 
access across all instruction 
units for memory access 
and system calls 
 

- Utilize programmed I/O 
- Architecture can utilize instruction 
unit like a DMA or I/O processor 
- Synchronization need for valid/fair 
device access 
- Interrupts must be dispatched to 
various instruction units 

Strea-
ming 

- Instruction units self-scheduled 
by flow of data  
- Critical sections and scheduling 
only make sense if there is a 
guiding host execution unit  
- Context switch requires draining  
array and restructuring the rules 

- With a hybrid approach 
(something more like a 
MIMD with lockstep 
communication), system 
calls and memory 
management follow the 
rules of the MIMD 
architecture. 

- Device drivers managed  based on  
the array 
- Interrupts are more like 
synchronization points causing data 
flow at the edges of the array 

VLIW - Like TaskScalar with much larger 
context  

- One pool like TaskScalar  - Device drivers like TaskScalar  
- Interrupts at a single instruction unit 
must schedule the control lines to 
force all of the units to branch to the 
interrupt service  

Table 2:  Subset of M3T morphware shapes and issues. 
 
 
2.5 Applications 
 
While a polymorphous architecture such as M3T can be used for different application domains, 
we have focused on speech processing. This domain was chosen for its importance to both 
commercial and military communities. We have been especially keen to make the case for the 
potential commercial interest of M3T (and other polymorphous computer architectures) to IBM. 
From many conversations with IBM researchers and developers, we concluded early on in the 
project that speech processing makes the most commercial sense for a chip like M3T. The M3T 
and Cyclops chips will be more cost-effective solutions than current chips for speech processing, 
due to their density of compute power and their versatility. 
 
Speech/voice processing applications need high compute capabilities and sizable (but not 
enormous) memory sizes. The Cyclops and M3T chips provide enough compute power density. 
For example, a Cyclops chip can provide 64000 MIPS, which is roughly enough to support 32 
speech channels in real time. As for the memory requirements, we are counting on the caches to 
capture the first-level working sets and the 4 Gbyte off-chip memory to capture the memory 
footprint of the applications. Note that this application domain inherently contains a lot of 
parallelism, so we can tolerate the off-chip memory demands with parallelism. 
 
The commercial application (Sphinx) [RAV96] and the defense application (Language Identifier 
or LID) were chosen as the primary speech processing applications that could demonstrate the 
polymorphic capabilities of M3T. 
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IBM researchers have also focused on network processing (TCP processing, cryptography, 
protocol conversion, etc).  While they kept some of their evaluations and algorithms confidential, 
they have found that a chip like Cyclops is very relevant and potentially cost-effective for these 
types of workloads. They are in designing a Cyclops-light version of the chip for network 
processing. 
 
 
3. METHODS, ASSUMPTIONS, AND PROCEDURES 
 
In this section, the methods, assumptions, and procedures that were used to evaluate M3T are 
described.  
 
3.1  Polymorphous Micro-Architecture 
 
To evaluate M3T’s polymorphous architecture, a detailed software simulator of the M3T 
hardware, with all its architectural templates has been developed. This simulator is able to run 
program  executables produced by the chain of M3T polymorphous software tools (Figure 2). 
With such support, we have been able to get a very accurate glimpse of how the actual M3T chip 
would perform. 
 
In addition, for power consumption evaluation, the M3T simulator has been enhanced with  a 
power simulator developed at the University of Illinois as part of the FlexRAM project 
[HUA00,KAN99]. With this support, the power consumption of the different modules of the 
M3T architecture can be estimated. 
 
As shown in Figure 2, the M3T polymorphous software tools can also generate executables that 
run on the IBM Blue Gene/C (Cyclops) simulator. This capability has enabled the evaluation of 
our polymorphic concepts on the Cyclops design [CAS02]. Each Cyclops chip has 384 
concurrent threads, 8 Mbytes of memory, and can achieve up to 24 Gflops. The latest version of 
the Cyclops architecture now includes several polymorphous features originally proposed for 
M3T, including:  (i) very fast barrier synchronization (wired-OR), (ii) support for 
synchronization groups, (iii) fast access to other threads’ local memory, and (iv) interest caching.  
 
These four features are described in detail in [CAS02]. The very fast barrier synchronization 
allows all threads to synchronize in a barrier in a handful of cycles. This support is required for 
the TaskScalar, VLIW, and Streaming templates. It can work with synchronization groups, 
whereby groups of threads synchronize independently in different barriers. This support is 
required in M3T to space-share the chip between several different templates. The fast access to 
other threads’ local memory is used to support the ability of  processors in the TaskScalar 
template to write to other processors’ Task State Tables and read from other processors’ Pending 
Task Windows. It is also used to support the fast communication in the Streaming template 
between the Control Thread, Stream Execution Core, and DMA. Finally, the interest caching is a 
special support that enables a programmer to specify, when a processor is loading a stream of 
cache lines, where these lines are loaded. For example, these lines can go to a subset of processor  
caches (an “interest group’’), or  just one. This mechanism is used in the Streaming template to 
support directing a stream of data to different parts of the Stream Register File as it comes from 
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main memory.  This support is  necessary for the high performance of  the Streaming template as 
described in Section 2.1.  
 
Finally, IBM Cyclops VLSI designers have helped us estimate the area cost and design 
complexity of our M3T micro-architecture. With all this support, we have fully evaluated 
polymorphism. 
 
3.2  Polymorphous Modeling and Synthesis Tools    
 
The modeling and synthesis tools have leveraged a set of tools originally developed for Adaptive 
Computing Systems created at Vanderbilt University. These tools have been extended to develop 
design space representation techniques for fine-grain architectural adaptation, efficient synthesis 
to polymorphous architectures, and synthesis of both morphable middleware and embedded 
continuous validation.   
 
These techniques have been verified for both the M3T and the Cyclops architectures. 
 
3.3  Polymorphous Compiler  
 
We have built a source-to-source C compiler to generate polymorphous code. The compiler is 
based on the Stanford SUIF compiler [HAL96] and the University of Illinois FlexRAM compiler 
[LEE01,KAN99]. The compiler takes code instrumented with pragmas that indicate how to break 
the code into modules, what architectural templates to use in each module, how to schedule the 
modules, and how to overlap execution of the processors. The compiler generates executable 
code based on these commands.  
 
As shown in Figure 2, the compiler is fully embedded in the M3T polymorphous software tools. 
In addition, it has two back-ends: one that generates executables for the M3T simulator and one 
that generates code for the Cyclops simulator. The Cyclops simulator has been enhanced to 
emulate the polymorphous architecture features of M3T.  
 
3.4 Morphware   
  
The M3T morphware is Linux based, and provides the familiar Posix interface, which allows 
application programs to be developed (in part) on generic workstations and PCs.   The RT-Linux 
extension from the Embedded Linux Initiative is used and supplemented, thereby allowing 
precise timing and control of the underlying hardware.  However, further optimization and 
support for architectural adaptivity is necessary. 
 
Morphware configuration is a two-stage process.  During system generation, the models of 
Section 2.2 are used to select and constrain the space of possible API calls.  Further, during 
system generation, the models are used to select and constrain the hardware architecture. 
Morphware modules are selected only if needed.  In this way, the morphware is constrained to a 
subset of the full API.  The model-based configuration selects the minimal set of morphware 
modules, supporting all hardware and software scenarios for a particular application.  In addition, 
the configuration process synthesizes trigger sources that drive system mode changes (based on 
the FSM models).   
 
The configuration process builds the morphware system such that the space of possible shapes 
meets several requirements.  The modules chosen at any one instant must be free of conflicts and 
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must have all of their dependencies met.  That is, some modules may not work correctly if other 
conflicting modules are present.  Likewise, other modules may not work correctly if companion 
modules are not present.  The memory footprint must be tracked and maintained.  Integration 
between modules is seamless. After configuration, the M3T compiler (Section 2.3) processes the 
morphware in order to optimize it, tuning the kernel for the selected hardware template.   In this 
way, each instantiation of the morphware will be a specialized runtime kernel, synthesized 
directly for the target hardware and application of concern, approaching the efficiency of a hand-
rolled kernel. During run time, portions of the morphware move around such that the changing 
lower- and higher-level interfaces required are supplied as and when needed. 
 
The M3T morphware has been targeted to both the M3T simulator and the Cyclops simulator. 
The RT-Linux code base provides a good starting point for the Posix interface modules needed 
to implement the morphware.  
 
3.5 Applications 
 
The application focus for the M3T architecture has been on speech processing applications: one 
commercial application (Sphinx) and one defense application (LID). 
 
3.5.1 Sphinx 
 
Sphinx [RAV96] is a state-of-the-art popular speech recognition program. It is DARPA funded, 
and can be downloaded from http://www.speech.cs.cmu.edu/sphinx. It contains 140,000 lines of 
code. In our experiments, we run it with 9.5 seconds of speech with the Diplomat  dictionary, 
which has 3,493 words. The program takes 12.5 seconds to execute on one processor of a 270 
MHz Sgi origin 200.  
 
A Sphinx execution can be divided into the following steps in sequence: (1) signal processing 
front end, (2) feature distance computation, (3) distance scoring, (4) language model searching, 
and (5) backtrace. 
 
3.5.2  LID 
 
The LID  application is a military application for voice processing. It was provided by military 
customers of BAE SYSTEMS. LID is used to improve situational awareness and effectiveness 
through real-time automated aids for the linguist operator. LID automatically sorts signals based 
on language spoken. It can handle multiple Signals of Interest (SOI) simultaneously.  
 
LID has two key kernels: GMM and Viterbi. GMM implements a Gaussian Mixture Model. It 
evaluates probabilities formed by a distribution, which is a mixture of Gaussians for all models 
and all features. It is the most computational part of the LID algorithm. It results in 4 deeply 
nested loops.  
 
The Viterbi algorithm is used to score paths through the phones for a given feature set. It is not 
as computationally intensive as the GMM evaluation. It includes a lot of bookkeeping. 
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4. BACKGROUND AND ALTERNATIVE SOLUTIONS 
 
The M3T system involves not only novel polymorphous micro-architecture, but also integrated 
and advanced polymorphous software tools. The polymorphous architecture morphs itself into 
different architectural templates to adapt to different program phases; the software supports 
polymorphism at each layer of the system: modeling and synthesis tools, compiler, and 
morphware. To compare with other current technologies, we explore the two aspects separately: 
architecture and software. 
 
4.1 Architecture 
 
There are several related architectural technologies. We compare our work to (1) chip 
multiprocessor and intelligent memory technology, (2) reconfigurable computing and (3) 
hardware support for speculative parallelization. 
 
Chip multiprocessor and intelligent memory 
 
There is significant performance motivation to build wider and larger superscalar chips. 
However, complexity and cost will soon prevent doing so. CMP (chip multiprocessor) [HAM97] 
is an advanced technology that puts multiple, relatively simple processors into a single chip. The 
total area may be comparable to that of a superscalar processor. However, the CMP typically has 
a higher clock frequency, a simpler implementation, and a lower cost. Examples of CMPs are the 
IBM Power4 chip and the HP MPOC [RIC02]. Another current trend is the integration of cores 
and a lot of memory into a single chip, therefore reducing processor-memory communication 
overhead. This architecture has been called Intelligent Memory. Some examples of such 
architectures are IRAM [KOZ97], Shamrock [KOG96], Imagine [RIX98], and FlexRAM 
[KAN99]. Note, however, that conventional CMP and intelligent memory architectures cannot 
reconfigure the hardware. M3T is a novel CMP architecture that includes new morphable 
hardware. 
 
Reconfigurable computing 
 
CMU’s PipeRench [GOL00][CAD00] is a programmable data-path that can be used to accelerate 
numerically-intensive applications. PipeRench is composed of pipeline stages called strips. The 
compiler generates the virtual strips and maps them into the hardware strips at run-time. 
PipeRench is intended to be used as a coprocessor [SCH02] in boards with memory chips and 
conventional microprocessors. The PipeRench architecture is well suited for regular applications, 
but its limited reconfiguration makes it difficult to handle irregular ones. CMU’s Phoenix project 
[BUD02] explores the direct implementation of programs in reconfigurable hardware. RFUs 
(Reconfigurable Functional Units) are working with general purpose processors to improve the 
program performance. Compiler issues and interface between CPU and RFU are addressed in 
[VEN02]. Like PipeRench, RFUs are used as coprocessors and the complexity of the interface 
between CPU and RFU limits its efficiency. In M3T, instead, we use the reconfigurable 
hardware as the main computation core. 
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Hardware support for speculative parallelization 
 
Speculative thread-level parallelization [AKK98][CIN00][GAR03][STE00] tries to extract 
thread level parallelism from hard-to-analyze applications. In this technique, the program is 
partitioned into threads that are assigned to different execution units. Threads execute in parallel 
if no dependence violation is detected. If a dependence violation is detected, the offending 
threads are squashed or repaired. Some hardware support is usually needed for speculative 
parallelization [SOH95]. Note, however, that misspeculation may hurt performance significantly. 
In the  M3T TaskScalar template, we enforce the dependences between tasks,  rather than 
optimistically assume that there is no violation ahead. Therefore, we minimize task squash 
overhead. 
 
4.2 Software 
 
On the software side, we compare our work to compiler-supported speculation, the streaming 
programming model,  modeling and synthesis tools, and morphware. 
 
Compiler-supported speculation 
 
With compiler support, speculative thread-level parallelization can significantly improve system 
performance. Many compiler techniques can be utilized to analyze applications at a high level, 
resulting in benefits to run-time prediction and speculation. For example, an automatic task 
selection scheme is proposed in [VIJ98]. The compiler employs control flow heuristics to avoid 
control flow mis-speculation and employs data dependence heuristics to reduce communication 
overhead. [KIM01] presents a compiler algorithm to discover a new program property called 
memory reference idempotency.  Memory accesses with such a property can directly access non-
speculative storage. They do not need to be buffered, therefore reducing the possibility of 
speculative storage overflow. The M3T hardware goes beyond this in that it can enforce control 
and data dependencies at run-time. Thus, the compiler can aggressively generate tasks and let the 
hardware solve dependence violations.  
 
Stream Programming Model 
 
Several researchers have proposed the stream programming model [MAT01][KAP01]. The 
model consists of streams and kernels. Streams include sequences of similar data records. 
Kernels are small programs that operate on the input streams and produce a set of output streams. 
Imagine [KAP02] is a hardware implementation of this programming model. M3T supports 
streaming. 
 
Modeling and synthesis tools 
 
The ADAPTERS program of Honeywell [ADA01] addressed system composition using a 
dataflow mechanism, without provisions for design alternatives (design space is limited to 
processor assignment).  Systems are constructed by assembling components of C and VHDL. 
Synthesis is accomplished by generating assemblies of components with Genetic algorithms for 
process placement. BYU synthesizes systems via a new language called Java Hardware 
Decription Language (JHDL), which allows low-level circuit architecture description [BEL98].  
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This could form the basis for hierarchical composition of architectures. However, it lacks fine-
grained dynamic reconfiguration capabilities.  CMU’s PipeRench architecture and tools have 
developed an architecture and compiler technology to map algorithms to a virtual computational 
pipeline [GOL00]. However, the architecture is restricted to pipeline computation with a fixed 
ALU component. 
 
The Ptolemy project [EDW97] has investigated multiple ‘Models of Computation’ and has 
implemented a design capture for multiple target domains. The system is being extended for 
synthesis of FPGA-based systems.  The Ptolemy project has forged many new concepts in this 
field, with a variety of representation and analysis formalisms.  The models of computation are 
implemented in a software-intensive process requiring significant effort to tune the modeling 
paradigm. From the modeling standpoint, these approaches raise the level of abstraction away 
from the chip-level details. However, they fail to extend to system-wide issues, such as timing, 
size, weight, and power.  They rely on the engineer to translate the model into viable designs for 
a specific architecture.   
 
The CODEF tool allows design space exploration based on a complete specification of 
partitioning/scheduling and interconnection synthesis [AUG01]. The focus is on time and area 
constraints, and primarily targets the design of dedicated systems. The DeFacto project from ISI 
synthesizes Adaptive Computing Systems (ACS) from source code, using compiler technology, 
addressing architectural and reconfiguration issues, and targeting fine-grained FPGA 
architectures [HAL99]. However, these systems fail to extend to system-wide issues, such as 
timing, size, weight, and power.  
 
M3T is, by definition, not a single architecture but a flexible range of architectures. It needs top-
level information and architecture-independent specification in order to be fully utilized. This is 
what makes our system unique. 
 
Morphware  
 
Morphware concepts have their roots in dynamic reconfiguration of operating systems. Shared 
libraries and dynamically loaded device drivers of Unix-like operating systems provide concepts 
in this region [TAN92].  Further, static configuration of operating systems is both an active 
research [VMW00] and previously successful field. Commercially available real-time operating 
systems have advanced to a level where intelligent agents (or wizards) aid in the configuration 
process when targeting a specific embedded platform [WIN99]. Likewise, software optimization 
of the machine instructions executed at runtime is currently advancing rapidly.  For example, 
Transmeta's Crusoe processor [KLA00] optimizes the VLIW-like instructions it uses to 
implement the x86 instruction set on the fly through a software reconfiguration.  
  
These related research efforts provide insight into the Morphware challenges, but they do not 
focus on the same problem.  Dynamic reconfiguration of operating systems is focused on the 
addition of services, but does not consider the shape of the processor hardware changing as it 
does in a M3T.  Static operating system configuration focuses on issues including the target 
processor hardware architecture, but does not consider a dynamically changing hardware 
environment.  Rather, it expects to use truly hand-coded core routines for every processor 
architecture.  Lower-level concepts modifying the machine code do not expect the operating 
system shape to morph.  For example, Transmeta's layered architecture has all code morphing 
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well-hidden inside the lowest layers of its architecture, and simply supports existing operating 
systems at the higher levels. 
 
5.  RESULTS, ACCOMPLISHMENTS AND DISCUSSION 
 
In this section, the main results obtained in the M3T project are discussed. The results are 
organized into the following topics: polymorphous micro-architecture (Section 5.1),  IBM 
Cyclops chip hardware and infrastructure (Section 5.2),  performance evaluation (Section 5.3),  
polymorphous modeling and synthesis tools (Section 5.4),  polymorphous compiler (Section 
5.5),  morphware (Section 5.6), tool integration (Section 5.7), and applications (Section 5.8).  For 
a discussion on technology transfer, see Section 6.  
 
Most of these results are documented in papers that can be obtained from 
http://iacoma.cs.uiuc.edu/m3t,  and the slides presented in PI Meetings and Review Meetings. 
Consequently, a short summary of the main points is presented here. 
 
5.1  Polymorphous Micro-Architecture 
 
Conceived and designed a set of new micro-architectural primitives for polymorphism that 
allow a processing architecture such as M3T to dynamically morph into the MIMD, VLIW, 
TaskScalar, and Streaming architectural templates. As described in Section 2.1, these primitives 
include the per-cluster Pending Task Window (PTW), the per-processor Task State Table (TST), 
and the low-overhead synchronization hardware that enables very low overhead multi-group 
synchronization. As a result, we have an architecture that supports fast core-to-core 
synchronization, fast core-to-core data communication through registers, and fast core-to-core 
control communication.  
 
The resulting micro-architecture can morph within and across applications dynamically. 
Simulation results show that the architecture can deliver at least one order of magnitude higher 
performance when the architectural template matches the application needs.  
 
Influenced the design of the  IBM Blue Gene/C (Cyclops) chip [CAS02] to include several of 
our micro-architectural supports for polymorphism. Such supports include: (i) very fast barrier 
synchronization (wired-OR), (ii) support for synchronization groups, (iii) fast access to other 
thread’s local memory, and (iv) interest caching. The last two primitives are very simplified 
implementations of our PTW and TST primitives. 
 
Developed the novel TaskScalar template  which delivers very high performance for irregular 
codes, and enhances programmer productivity.  Programmer productivity is enhanced in three 
ways: (1)  TaskScalar provides hardware support to buffer and deterministically replay code 
sections, therefore helping debug software bugs [PRV03]; (2) TaskScalar can support atomic 
code sections, where critical sections are optimistically executed by several threads concurrently. 
Threads successfully complete if there is no data collision. This support enables TaskScalar to 
take programs with coarse-grained synchronization and deliver performance as if 
synchronization had been finely tuned [MAR02]; (3) TaskScalar provides hardware support to 
detect and fix parallelization bugs, therefore helping the programmer write parallel codes 
[CEZ03]. 
 



 

 

 

20 
 

 

Impacted the design of the IBM Productive, Easy-to-use, Reliable Computing System 
(PERCS) machine concept (part of IPTO’s High Productivity Computing Systems program). 
The proposed PERCS architecture includes some of the TaskScalar supports to enhance 
programmer productivity, including architectural support for debugging, support for atomic 
sections, and support to ease parallelization. 
 
Defined the hardware, library, and morphware support necessary to support Streaming in 
M3T. We defined the architectural support required to support Streaming in M3T. The mapping 
of  the Streaming Virtual Machine (SVM) to an M3T chip is as follows: (1) the Stream 
Execution Core is the set of CPUs; (2) the Kernel Program Memory is the instruction caches of 
the CPUs; (3) the Stream Register File is the shared multi-banked cache;  (4) the DMA Engine is 
a plain CPU; and (5) the Control Thread is a plain CPU. 
 
The workings of the SVM are as follows. The Stream Execution Core loads stream inputs from 
(and stores them to) the shared multi-banked cache, which acts as the Stream Register File 
(SRF). The Kernel Program Memory works trivially, as it is the instruction caches of the 
processors in the M3T chip. The SRF allows read and write accesses from both the Stream 
Execution Core and the Direct Memory Access (DMA) engine, simultaneously. The DMA 
engine is just another CPU that generates addresses by strides, or indexed if the addresses are 
recorded in the SRF. It should be noted that the M3T’s DMA engine can perform very complex 
operations, since it is implemented in the M3T architecture with a standard CPU. Finally, the 
Control Thread gives commands to the Stream Execution Core and the DMA Engine through the 
M3T’s PTW. The Control Thread is notified of task completions (the VM_DONESYNC calls) in 
two ways: (1) it can build a tree of PTW requests, which allows pipelined streaming, or (2) 
through the use of  barriers. 
 
5.2  Cyclops Chip Hardware and Infrastructure 
 
Completed the design of the soft-core for the Blue Gene/C (Cyclops) chip. The chip includes up 
to 160 processors with 64-bit wide data-paths [CAS02]. The chip includes some M3T 
polymorphous hardware as well as additional DOD hardware requirements. The chip will be 
built in IBM’s Cu-11 (0.13 micrometer) ASIC technology (CMOS8S).  
 
Generated the layout of several components of the Cyclops chip. This includes the Floating-
Point Unit (FPU) and related logic. The FPU is completely functional. DOD and IBM have 
signed a 3-year contract to build the hardware and software of a working prototype with Cyclops 
chips, which will speed up the layout generation. 
 
Developed an initial version of the 64-bit software development tools for the Cyclops chip. 
These include an assembler, a linker, and a single-threaded instruction set simulator. The 
simulator is cycle-accurate. The development of C and FORTRAN compilers are currently under 
way. 
 
Completed the performance characterization of the Cyclops chip architecture. Using the cycle-
accurate simulator, detailed performance measurements of key benchmarks were performed on 
the simulated Cyclops chip. Results demonstrated that multithreading is an effective approach to 



 

 

 

21 
 

 

tolerate memory latency. Results also demonstrated that a Cyclops chip can achieve 100% peak 
performance for dense linear algebra kernels and 40% for sparse linear algebra kernels [CAS02]. 
 
Started development of multi-chip Cyclops system software. Since the Cyclops chip is expected 
to be part of a multi-chip machine, the software development effort for such a system has started. 
A multi-chip debugger environment and the first version of a multi-chip communication library 
have been developed. The simulator has been upgraded and tested for multi-chip operation. 
Correctness of first multi-chip application (a molecular dynamics code) has been verified. 
 
5.3  Performance Evaluation 
 
Developed a cycle-by-cycle software simulator of the M3T chip. Major effort was invested in 
creating a very accurate simulator of the M3T chip with all its templates. This simulator has been 
used to perform all the evaluations for the project. In addition, the simulator is tied to all the 
M3T polymorphous software tools. Consequently, it exercises the whole M3T hardware and 
software system. 
 
Demonstrated significant performance gains by exploiting polymorphism in the Sphinx 
speech-processing application. The Sphinx application contains three main kernels that can be 
used to demonstrate the M3T polymorphic capabilities. These kernels and their contribution to 
the execution time of Sphinx are: GetScores (32%), ChanEval (16%), and CepDist (12%). Each 
of these kernels runs best using a different template in M3T. Specifically, GetScores is a very 
regular subroutine and a good match for the VLIW template; CepDist is a parallel kernel and a 
good match for MIMD; finally, ChanEval is an irregular, loop-less  kernel and  a good match for 
TaskScalar. These kernels were executed using the best-matching template on a 4-core M3T, 
where each core was a 2-issue processor. Without any tuning, a combined speedup of 2.5x 
relative to Sphinx running on a single M3T core was obtained. This result demonstrates the 
power of M3T’s polymorphism. 
 
Demonstrated the ability of the TaskScalar morph and its compiler pass to speed-up irregular 
applications beyond the current state-of-the-art. It is well known that the SpecInt applications 
are highly irregular and difficult to speed-up with current superscalar processors [MAT02]. 
Consequently, the complete SpecInt2000 applications were executed on the M3T simulator 
driven by the TaskScalar compiler. The TaskScalar template demonstrated that by using only 2 
2-issue cores on the chip and no tuning, a speedup of up to 1.8 over a single superscalar 
processor equal to one of the cores for the whole application could be obtained.  
 
Demonstrated that Streaming is supported efficiently in M3T:  A StreamC FIR kernel running 
on M3T and on Imagine take comparable numbers of cycles. Streaming support was integrated 
into the M3T simulator, including the necessary libraries and morphware, demonstrating that 
Streaming can be supported efficiently in M3T:  A StreamC FIR kernel running on M3T and on 
Imagine took a comparable number of cycles. This was demonstrated at the December 2002 
M3T review meeting held in Washington, DC. 
 
Several interesting lessons were learned from the experiment: (1) Few source code modifications 
are required to support the Imagine code in M3T (The original code’s roughly 175 lines are left 
largely unmodified, and we add about 30 extra lines); (2) The performance achieved on this 
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particular application required less than a factor of 2 more cycles in the main loops, concluding 
that M3T can support streaming efficiently; (3) The successful use of StreamC/KernelC was 
harder than expected; (4) Performance hits can be dramatic  if one is not careful in the translation 
of the inner loops; and (5) Performance debugging is needed throughout the experiments, and 
with the final PCA products. 
 
Analyzed likely SWEPT improvements of the M3T/Cyclops solution.  The SWEPT properties of 
the current low cost commercial solution for speech processing (Sun Fire 280R server) were 
compared to a Cyclops chip with 64-bit datapaths. The Sun Fire 280R characteristics are: 
computation 1800 MIPS, power 600 W, size 1.9 cubic ft, weight 75 lb, can execute 1 real-time 
channel, and costs about $20,000. For Cyclops, we estimate: computation 64000 MIPS,  power 
300 W,  size 1 cubic ft, weight 15 lb, and can execute 32 real-time channels. Estimating the cost 
of a Cyclops board that connects to the PCI bus of a PC is hard. However, based on discussions 
with IBM developers, the cost is estimated to be about $32,000. Consequently, it is estimated 
that Cyclops provides a 60x reduction in size, weight, and power per channel.  It is also 
estimated that Cyclops provides a 20x reduction in cost per speech channel. This cost reduction 
results from the higher integration of the chip and the fact that it exploits parallelism to process 
several speech channels at the same time. 
 
5.4  Polymorphous Modeling and Synthesis Tools   
 
Developed design space representation tools and techniques for fine-grain architectural 
adaptation. The dataflow design representation has been extended to support fine-grained 
execution.  Knowledge of the temporal behavior of the component is required.  Consequently, 
the pattern, ordering and timing of data and instruction access is captured. This information is 
necessary to optimize the location, scheduling, and resource assignment for tasks. 
 
The dataflow representation has been extended to capture significant details of the internal and 
interface behavior of the components, including:  
 
a) Memory access patterns: footprint, data locality, and critical working sets.  These models 
incorporate a state machine description of a component's primary operating phases along with 
memory access descriptors for each mode.  From this, we are able to determine architectural 
template suitability. 
 
b) I/O protocol: the signaling protocol, data formats, and timing for data generation. State 
machine representations are used, with types and sizes of I/O accesses.  From these models, we 
are able to synthesize communications machines (Glue logic). 
 
c) Resource use: registers, CPU functional units, and data-paths. From this, guidance for 
architectural template selection is derived.  
 
The modeling paradigm and tools capture architectural templates, physical device realizations, 
and the mapping of logical architectural features to physical structures.  The M3T and Cyclops 
architectures have been modeled. Applications are also modeled. For example, the Sphinx and 
LID applications described in Section 3.5 were modeled. Finally, the set of morphware 
components are captured to represent the facilities available to components, along with 
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performance, resource requirements, and per-template availability.  Each hardware and software 
component permits specifications of constraints for required OS features. Overall, software 
component models are heavily annotated.  The hardware modeling captures substantial details of 
components and their mapping into architectural templates.  
 
Developed design space exploration tools and techniques for fine-grain architectural 
adaptation. To explore the design space for system synthesis, Ordered Binary Decision 
Diagrams (OBDD) [BRY92] were used. To employ OBDDs, the model alternatives are 
translated into a logical expression, with particular bit fields assigned to represent design 
alternatives.  Each concurrent alternative employs a unique bit field, where exclusive alternatives 
can share bit fields.  Implementation properties, such as timing, power, space, or weight, are 
discretized to an acceptable resolution and encoded in binary and assigned a bit field. The 
resulting equation represents the design space. 
 
System constraints are also encoded, and applied in a user-guided order.  Constraint application 
can be a simple AND operator, for constraints involving simple binary exclusion relationships, 
or can involve implementing complete arithmetic operator logic to compute sums or min/max 
over all possible combinations of alternatives.  As these constraints are successively applied, the 
design space is reduced until a suitably small set of viable alternatives is obtained. 
 
New model and constraint representation methods have been designed that consider the 
expansion of the design space. The goal is to reduce the required number of terms.  Further 
operators are added, in addition to the AND and PLUS operators. In critically constrained cases, 
it is possible that the size grows exponentially. Consequently, the scalability is managed by 
identifying the onset of OBDD growth and rearranging the OBDD’s. 
 
Developed system synthesis tools and techniques for fine-grain architectural adaptation. 
Architectural selection, component selection, OS/morphware configuration, and online 
verification generation have been addressed and described below. 
 
a) Architectural Selection. For each computational component, multiple implementations, each 
one optimized for a particular architectural template, are available. These define a design space, 
whose bounds are defined by the application flexibility, the span of potential target micro-
architectures, and the assignment of components to physical hardware. 
 
b) Component Selection and Connectivity Generation. To achieve maximal performance, the 
best form is selected, placed on the appropriate hardware component, and connected to data 
streams. The compiler is used in the loop of the software/hardware generation.  As a 
(computational alternative, architectural template) pair is generated, the compiler is called to 
produce an implementation and estimate its performance and specific resource utilization.  These 
results are used to select the best implementations within resource constraints, and to verify that 
the synthesized and compiled system meets requirements. 
 
c) OS/Morphware Configuration and Communication Generation. The application-specific 
morphware is composed from low-level components. Based on application requirements and 
hardware architecture, a specific morphware configuration is selected from the potential design 
space. The configuration contains the range of input API functions and timelines for their use for 
maximum overlay/multiplexing of resources like memory, CPU, and communication. 
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d) Online Verification Generation. While embedding instrumentation into the application can 
detect fault conditions, excessive instrumentation degrades performance. Consequently, 
monitoring facilities are synthesized to gather only critical information while minimizing impact 
on performance.  Computational modules are generated and installed that: (i) measure constraint-
sensitive parameters; (ii) perform on-line computations on those parameters to ensure constraint 
satisfaction; and (iii) compress and log deviations from the specifications. 

 
5.5  Polymorphous Compiler 
 
Conceived novel compiler pragmas to insert in the code to specify the architectural template to 
use and its characteristics. These pragmas are either inserted by the programmer or generated 
automatically by the synthesis tools. Such pragmas are used by the compiler to generate the 
correct code.  There are three groups of pragmas: (1) Architecture reconfiguration pragmas, 
which indicate how the architecture should be reconfigured at run time. Reconfiguration can 
occur at any time in the application; (2) Code breakup pragmas, which indicate how the code 
should be broken down into modules to be scheduled as a unit. The code in a module should 
have a uniform behavior and good locality; (3) Module scheduling pragmas, which indicate how, 
when, and where the module should be scheduled. For example, these pragmas may indicate that 
a module be executed when a certain condition occurs on a certain architectural template. 
 
Developed a source-to-source C compiler to generate polymorphous code. The compiler is 
based on the Stanford SUIF compiler [HAL96] and the University of Illinois FlexRAM compiler 
[LEE01,KAN99]. The input to the compiler is code instrumented with pragmas. As shown in 
Figure 6, the M3T compiler is organized as a set of transformers, one for each architectural 
template. The MIMD and TaskScalar transformers are fully automated. The VLIW and 
Streaming transformers need sizable hand-holding, as funding was not available to make the 
transformations completely automatic. 
 
As shown in Figure 2, the compiler is fully embedded in the M3T polymorphous software tools. 
In addition, it has two back-ends: it generates executables for both the M3T simulator and the 
Cyclops simulator.  
 
Developed novel compiler algorithms for the TaskScalar template, which are responsible for 
much of the speedups obtained for irregular applications. The novel TaskScalar transformer 
includes algorithms to build tasks. To build a task, a four step sequence is followed: (1) high-
level transformations, (2) task selection, (3) intra-task optimizations, and (4) inter-task 
optimizations. The novel inter-task optimizations include task vectorization, task fusion, task 
fission, task partitioning, task motion, task telescoping, and task elimination. With these 
algorithms, the TaskScalar transformer is very effective: the complete SpecInt2000 applications 
were executed on the M3T simulator, and the results showed that the TaskScalar template with 2 
cores on the chip and no tuning delivers a speedup of up to 1.8 for the whole application over a 
single superscalar processor.  
 
5.6  Morphware   
 
Identified and generated about 100 morphware fragments for speech processing. These 
different fragments have been documented and presented in several PI and Review meetings. 
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The TAU/Racy tools [MOH94,SHE98] have been ported to the M3T and Cyclops simulators and 
used for performance measurements. These tools provide a showcase for the power of 
morphware in speech processing applications. 
 
Actively participated in the Morphware Forum in support of standardization. The M3T team 
has participated and contributed in a variety of ways to the Morphware Forum. The most 
significant contribution was in helping to define the software metadata. The M3T design tools 
have been proposed as a metadata capture system for the Morphware Forum.  Their inherent 
ability to read/write XML, along with other XML/UML authoring tools allows storage, 
generation, and validation of metadata. Early versions of the tools are available to other PCA 
teams. Specifically, versions have been given to SPAWAR, Georgia Tech, MPI Software 
Technology Inc. (MSTI), and MIT. Additionally, Raytheon has expressed interest in using the 
M3T Model Integrated Computing (MIC) PCA tools for missile system architecture design and 
validation. 
 
5.7 Tool Integration 
 
Integrated most of the software tool chain. An end-to-end tool flow for some of the architectural 
templates has been completed. The following sets of tools are integrated: 
 
a) Modeling and synthesis tools, which include component and architectural models 
(architectural templates and architectural-specific components and metadata) and full-system 
design space navigation tools (tradeoff size-speed in resources, selection of templates and 
components, and selection and allocation of resources). 
 
b) Compiler and back-end builder, which generate single-application code that: (1) morphs in 
time between MIMD, VLIW, Stream, and TaskScalar; (2) space-shares the chip between 
different templates; and (3) integrates morphware. The code generation tool is also integrated. 
 
c) Simulators for the M3T chip and the Cyclops chip. 
 
The end-to-end path that drives the M3T chip simulator supports the MIMD, Serial, TaskScalar, 
and (with hand-holding) Streaming templates. The end-to-end path that drives the Cyclops chip 
simulator supports the MIMD, Serial, and (with hand-holding) VLIW and Streaming templates. 
Funding cuts prevented the completion of this portion of the effort. 
 
Began  supporting code generation for other PCA projects. Support was added to capture state-
based system behavior design. Moreover, the OBDD constraints system is being reworked to 
support XML design space and constraint specification. These tools are useful for other PCA 
projects. With these tools, parts of the RAW [WAI97] and Smart Memory [MAI00] architectures 
were modeled. Figure 7 shows how the potential integration of the M3T tools with other PCA  
projects could be accomplished. 
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5.8 Applications 
 
Analyzed the Sphinx speech processing application and showed its ability to exploit 
polymorphism. The Sphinx application was fully characterized (Section 3.5.1). A Sphinx 
execution has several steps in sequence: (1) signal processing front end, (2) feature distance 
computation, (3) distance scoring, (4) language model searching, and (5) backtrace. The 
application was profiled to identify the most time-consuming code sections. These code sections 
are: GetScores from the distance scoring stage (32% of the Sphinx time), ChanEval from the 
language model searching stage (16% of the Sphinx time), and CepDist from the feature distance 
computation stage (12% of the Sphinx time).  
 
Very interestingly, each of these routines has a very different type of code. Consequently, each 
of these routines can exploit a different template from M3T. Specifically, GetScores is a very 
regular subroutine and a perfect candidate for the VLIW template; CepDist is a parallel routine 
and a good match for MIMD; finally, ChanEval is an irregular, loop-less routine that matches the 
TaskScalar template.  
 
These routines were executed using their best-matching template on a simulated 4-core M3T, 
where each core was a 2-issue processor. Without any tuning, a combined speedup of 2.5x 
relative to Sphinx running on a single, simulated M3T core was obtained. This result 
demonstrates the power of M3T’s polymorphism for speech processing applications. 
 
Analyzed the LID voice processing military application and showed its ability to exploit 
polymorphism. The LID application was also fully analyzed (Section 3.5.2) and its execution 
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Figure 7: Potential integration of the M3T tools with other PCA projects. 
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was profiled. Its two main kernels are GMM and Viterbi. GMM implements a Gaussian Mixture 
Model. It evaluates probabilities formed by a distribution, which is a mixture of Gaussians for all 
models and all features. The Viterbi algorithm is used to score paths through the phones for a 
given feature set. It is not as computationally intensive as the GMM evaluation.  
 
Looking at the code, GMM corresponds to the combination of GetScores and CepDist in Sphinx. 
Viterbi corresponds to ChanEval in Sphinx. Consequently, once again, different M3T templates 
work best on different subroutines: GMM runs best under the MIMD and VLIW templates, 
while Viterbi runs best under the TaskScalar template. This proves again the power of M3T for 
speech processing applications. Unfortunately, it was not possible to quantify the speedups, if 
any, for the LID application due to programmatic funding limitations beyond our control. 
 
Estimated likely SWEPT improvements of the M3T/Cyclops solution for speech processing 
applications.  The SWEPT properties of the current low cost commercial solution for speech 
processing (Sun Fire 280R server) were compared to a Cyclops chip with 64-bit datapaths. The 
Sun Fire 280R characteristics are: computation 1800 MIPS, power 600 W, size 1.9 cubic ft, 
weight 75 lb, can execute 1 real-time channel, and costs about $20,000. For Cyclops, we 
estimate: computation 64000 MIPS,  power 300 W,  size 1 cubic ft, weight 15 lb, can execute 32 
real-time channels, and costs about $32,000. Consequently, it is estimated that Cyclops provides 
a 60x reduction in size, weight, and power per channel.  Additionally Cyclops provides an 
estimated 20x reduction in cost per channel. 
 
6. TECHNOLOGY TRANSFER 
 
The M3T project has developed technology that has been transferred to industry. In this section, 
the main technology transfer accomplishments are summarized. 
 
Impacted  the architecture of the IBM Blue Gene/C (Cyclops) chip. IBM’s Cyclops architecture 
now includes several polymorphous features originally proposed for M3T, including:  (i) very 
fast barrier synchronization (wired-OR), (ii) support for synchronization groups, (iii) fast access 
to other thread’s local memory, and (iv) interest caching. These last two primitives are very 
simplified implementations of our PTW and TST primitives. M3T concepts have influenced 
IBM computer architects. 
 
M3T TaskScalar’s architectural supports to enhance programmer productivity have impacted 
the IBM PERCS machine concept (part of IPTO’s HPCS program). Specifically, the currently-
proposed PERCS architecture includes some of TaskScalar’s architectural support for debugging 
[PRV03], support for atomic sections [MAR02], and support to ease parallelization [CEZ03]. 
 
Impacted BAE SYSTEMS customer base, which is now aware of the possibilities of 
polymorphous architectures to speed up speech processing. A solution based on a 64-bit 
Cyclops/M3T chip is estimated to deliver a 60x reduction in size, weight, and power per speech 
channel, and a 20x reduction in cost per speech channel, compared to the current low-cost 
solution for speech processing.  
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Impacted the Morphware Forum. The M3T design tools are being proposed as a metadata 
capture system for the PCA program’s Morphware Forum.  The tools’ inherent ability to 
read/write XML, along with other XML/UML authoring tools allows storage, generation, and 
validation of metadata. Early versions of the tools are available to other teams in IPTO’s PCA 
program. Specifically, versions have been given to SPAWAR, Georgia Tech, MSTI, and MIT. 
 
Raytheon is considering using Model Integrated Computing (MIC) PCA tools from M3T for a 
missile system architecture design and validation. 
 
The Model Integrated Computing Alliance at ISIS, which includes Boeing, GM/Saturn, 
DuPont, Motorola, USAF/AEDC, USARMY/AMCOM and NASA is now aware of the power of 
PCA architectures in general and the M3T architecture in particular.  Personnel in 
instrumentation and image processing for United States Air Force Arnold Engineering 
Development Center (USAF/AEDC) have indicated their interest in M3T technology for 
aerospace testing applications. Current work with AEDC for image processing should benefit 
from PCA concepts.  The M3T architecture is also well suited to low-power wireless 
applications.  Ongoing work at ISIS in the PCES program aimed at system synthesis from a 
Waveform Definition Language has been interfacing with the Air Force Research Laboratory’s 
Software Radio group at Rome, NY (AFRL/IFG).  The M3T architecture is naturally suited to 
multi-band/multi-mode radio applications.  Motorola has also expressed interest in the 
commercial applications of this technology for cell phones and digital radio. 
 
7. CONCLUSIONS AND RECOMMENDATIONS 
 
The Morphable Multithreaded Memory Tiles (M3T) system is a novel computer system that has 
proved that a computer system with both polymorphous hardware and a complete polymorphous 
software environment is orders of magnitude more cost-effective than conventional computing 
systems.  M3T innovates with two main ideas:  (1) novel polymorphous architectural support 
that enables the M3T chip to appear as a TaskScalar, VLIW, MIMD, or Streaming engine (or a 
time/space shared combination of them) as the application runs, and (2) a complete 
polymorphous software environment that includes synthesis tools for high-level design, a 
polymorphous compiler and code generator, and morphware fragments. 
 
The accomplishments of the M3T project have been many. The contributions in micro-
architecture have been the conception and design of a set of new micro-architectural primitives 
for polymorphism; the development of the novel TaskScalar template which, in addition to 
delivering very high performance for irregular codes, enhances programmer productivity; the 
definition of the hardware, library, and morphware support for Streaming in M3T; the impact on 
the design of the IBM Blue Gene/C (Cyclops) chip, which includes several of M3T’s micro-
architectural supports for polymorphism; and the impact on the design of the IBM PERCS 
machine concept (part of IPTO’s HPCS program). 
 
The contributions in the Cyclops chip hardware and infrastructure have been the completion of 
the design of the soft-core for the Blue Gene/C (Cyclops) chip; the generation of the layout of 
several components of the Cyclops chip; the development of an initial version of the 64-bit 
software development tools for the Cyclops chip; the performance characterization of the 
Cyclops chip architecture, and the partial development of multi-chip Cyclops system software. 
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As for performance evaluation, a cycle-by-cycle software simulator of the M3T chip has been 
developed; the ability of the TaskScalar template and its compiler pass to speed-up irregular 
applications beyond the current state-of-the-art has been demonstrated; Streaming is now 
supported efficiently in M3T; and significant performance gains in the Sphinx speech-processing 
application have been shown by exploiting the M3T’s polymorphic capabilities. 
 
The contributions in polymorphous modeling and synthesis tools have been the development of  
design space representation tools for fine-grain architectural adaptation; and the development of 
novel design space exploration and system synthesis techniques for architectural adaptation. As 
for the polymorphous compiler, novel pragmas that specify the architectural template and its 
characteristics have been conceived; a source-to-source C compiler that generates polymorphous 
code has been developed; and novel compiler algorithms for the TaskScalar template that are 
responsible for much of the speedups obtained for irregular applications have been developed. 
Moreover, about 100 morphware fragments for speech processing have been identified and 
generated, and active participation in the Morphware Forum has resulted in standardization of 
concepts. After substantial effort, most of the M3T’s software tool chain has been integrated 
together, and code generation for other PCA projects has started. 
 
Finally, the contributions in applications have been the analysis of the Sphinx and LID speech 
processing applications. The ability of these applications to exploit polymorphism has been 
demonstrated; and the likely very large SWEPT improvements of the M3T/Cyclops solution for 
speech processing applications have been estimated.   
 
An important emphasis of the M3T project has been technology transfer. The architecture of the 
IBM Blue Gene/C (Cyclops) chip has been influenced by the insertion of polymorphous micro-
architecture constructs; the design of the IBM PERCS machine concept (part of the HPCS 
program) has been impacted with TaskScalar’s architectural supports to enhance programmer 
productivity; BAE SYSTEMS customer base, is now aware of the benefits that polymorphous 
architectures can provide to speed up speech processing; the Morphware Forum has also been 
influenced; a project with Raytheon to use MIC PCA tools for missile system architecture design 
and validation has been developed; and the companies in the Model Integrated Computing 
Alliance at ISIS have been impacted. 
 
It is strongly recommend that further study of  M3T’s TaskScalar template is performed. This 
is a novel template that enhances programmer productivity, in addition to delivering very high 
performance for irregular codes.  Programmer productivity is enhanced in several ways. For 
example, TaskScalar provides hardware support to buffer and deterministically replay code 
sections, which greatly helps debugging software bugs [PRV03]. In addition, TaskScalar 
supports atomic code sections, where critical sections are optimistically executed by several 
threads concurrently. These sections successfully complete if there is no data collision. This 
support enables TaskScalar to take programs with coarse-grained synchronization and deliver 
performance as if synchronization had been finely tuned [MAR02]. Finally, TaskScalar provides 
hardware support to detect and fix parallelization bugs, therefore assisting the programmer as 
parallel codes are developed [CEZ03]. 
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It is also recommended that the tool integration provided by the M3T project be exploited in as 
many ways as possible. The set of polymorphous software tools put together in the M3T project 
is unique. It includes modeling and synthesis tools, compiler, back-end builder, and morphware. 
These tools have been proven to boost the capabilities of polymorphous architectures. They 
should be used in other PCA architectures. 
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LIST OF SYMBOLS 
 
 
API:  Application Program Interface 
DMA:  Direct Memory Access 
HPCS:  High Productivity Computing Systems 
LID:  Language Identifier 
M3T:  Morphable Multithreaded Memory Tiles 
MIC:  Model Integrated Computing 
MIMD:  Multiple Instruction Streams and Multiple Data Steams 
OBDD:  Ordered Binary Decision Diagrams 
PCA:  Polymorphous Computing Architecture 
PERCS:  Productive, Easy-to-use, Reliable Computing System 
PTW:  Pending Task Window 
SUIF:  Stanford University Intermediate Format 
SVM:  Streaming Virtual Machine 
TST:  Task State Table 
VLIW:  Very Long Instruction Word 




